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Abstract
In this paper, we present the derivation of a new set of heat transport
equations, called the equations of nine-moment phonon hydrodynamics, which
are expected to describe transient processes under high thermal loads. The
nine-moment model introduces the energy density, the heat flux and the flux
of the heat flux as basic gas-state variables. The evolution equations for these
variables are derived from the Grad-type expansion method applied to the
Boltzmann–Peierls equation with Callaway’s collisional terms. The basic idea
is to expand the phase density about an anisotropic Planck distribution. The
advantage of using this distribution is that the heat flux is incorporated into
the model in a non-perturbative manner, thereby allowing virtually arbitrarily
large values for the components of the heat flux. Special emphasis is placed
on finding explicit closed-form expressions for the moment flux and collisional
quantities in terms of independent gas-state variables. Our model involves two
relaxation times and it seems particularly suited for describing phonon flows
in the regime where the relaxation time for normal processes is much smaller
than the relaxation time for resistive processes.

PACS numbers: 51.10.+y, 44.10.+i, 05.30.Jp, 05.70.Ln

1. Introduction

Heat transport by phonons is important in a variety of technological applications. Many of
these applications involve transient processes under high thermal loads. A full description of
thermal processes requires the study of phonon flows in the ballistic, hyperbolic and diffusive
regimes. Here, the hyperbolic regime is studied with a view to a deeper understanding of
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the effect of short time scales of the order of the phonon relaxation times on heat transport.
Moreover, our aim is to describe the nonlinear effects associated with the heat flux. At the
end of the introduction, we mention how to incorporate the diffusive and ballistic flow into
our model.

In the case when the particle description of phonons is valid [1–3], the Boltzmann–Peierls
(BP) equation is often used [4] in conjunction with the relaxation-time approximation. Even
under the assumption of Callaway’s model [5, 6], the BP equation is a complicated nonlinear
equation for the distribution function f (i.e., the phase density or the number density of
phonons) and closed-form analytic solutions are virtually unobtainable. The method of
moments provides a means of constructing approximate solutions as it replaces the problem
of directly solving the BP equation with that of solving a system of generalized transport
equations for various hydrodynamic and quasi-hydrodynamic variables.

In the work by Larecki [7], the four-moment system was presented as a possible model
for heat transport in the hyperbolic regime. This model is based on the quasi-equilibrium
Planck distribution3 which incorporates the heat flux in a non-perturbative function; i.e., there
are no unphysical limitations on the magnitudes of the individual components of the heat flux
to maintain a positive distribution function. It yields a set of four quasi-linear differential
equations with the independent variables being the energy density and the three components
of the heat flux. In this context, a word should be said about the normal and resistive processes.
As is well known, normal processes (scattering processes which conserve both energy and
momentum) tend to return the phonon gas to a quasi-equilibrium Planck distribution F, whereas
resistive processes (scattering processes which conserve only energy) try to force it towards
an equilibrium Planck distribution FE . We define τn to be the relaxation time for normal
processes and τr to be the relaxation time for resistive processes. With these definitions, we
conclude that the four-moment system can be used in the case when τn � τr (then there is
a physical reason to employ the quasi-equilibrium Planck distribution F in place of the full
distribution f ) and that it is a good model for time scales of the order of τr . Moreover, by what
has been said above, this model is capable of representing the nonlinear effects associated
with the heat flux.

Here, we want to propose a theory which describes phenomena at frequencies comparable
to the inverse of τn. This can be achieved by enlarging the set of independent gas-state variables,
through the introduction of higher-order moments of the distribution function f . A natural
way to derive the evolution equations for these extra variables is to generalize the classical
method of Grad [9, 10]. Thus, we begin by expanding the number density of phonons about
a quasi-equilibrium Planck distribution F. We proceed in a systematic manner, i.e., we first
set up a Hilbert space for the expansion and subsequently define an orthogonal basis in this
Hilbert space. The use of the quasi-equilibrium Planck distribution F for the expansion differs
significantly from the Banach–Piekarski approach [11] which uses the equilibrium Planck
distribution FE for it. In fact, the basic advantage of using the quasi-equilibrium Planck
distribution F is that the heat flux is incorporated into the model in a non-perturbative manner,
thereby allowing virtually arbitrarily large values for the individual components of the heat
flux. Developing the theory along these lines, one can obtain a whole hierarchy of closed
systems of moment equations corresponding to the hierarchy of truncated expansions of the
distribution function f . Unlike the four-moment system which involves only the relaxation
time τr , each member of this hierarchy of closures contains the relaxation times τn and τr .
These closure models are linear in the excessive variables and nonlinear in the energy density
and the heat flux. Such an approach seems particularly useful if we assume that τn � τr .

3 In the main text and [8], we also call this distribution the anisotropic Planck function.
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The physical consequence of this assumption is clear. During the first time period τn, normal
processes make the phonon gas approach F, and then during the longer time period τr , resistive
processes return it to FE . Also, because of τn � τr , the excessive variables are fast variables
that dacay to their quasi-equilibrium values after a short relaxation time τn. For time scale
of the order of τn, we are thus justified in assuming that f is close to F. Moreover, having a
separation of two time scales, we can expand f about F.

Denoting by Mij the flux of the heat flux, the simplest model which may be expected to
offer a description of the aforementioned effects is obtained by including the deviatoric part
of Mij in the set of independent gas-state variables. We interpret this model as the nine-
moment closure model or, in a phenomenological setting, the quasi-hydrodynamic description
in which the state of the phonon gas is assumed to be defined completely by the usual four
variables (here the energy density and the heat flux) supplemented by the five components
of the deviatoric part of Mij as extra gas-state variables. Using the BP equation under the
relaxation-time approximation, our purpose in this paper is to derive and display the equations
of phonon hydrodynamics in the nine-moment closure model; in particular, to obtain explicit
closed-form expressions for the moment flux and collisional terms. In a sense, the idea to use
the deviatoric part of Mij as an extra dynamical variable is not entirely new. The equations of
nine-moment phonon hydrodynamics were first derived by Banach and Piekarski [12]. They
assumed that the phonon gas is close to local equilibrium and thus required that the components
of the heat flux are small. For a linear model, further simplifications are possible and this has
been exploited by Dreyer and Struchtrup [13]. In their work, numerical calculations based
on the linearized nine-moment closure were successfully fitted to the experimental data on
heat pulses in crystals. Applications of this closure to the gradient expansions of qi and Mij

have been discussed by Karlin et al [14] and Karlin and Gorban [15]. In the present nonlinear
model, one can handle problems with large components of the heat flux. This is a definite
improvement over previous approaches which restrict attention to small deviations in the heat
flux from zero.

In the context of classical kinetic theories, a similar strategy for deriving a hierarchy of
moment closure systems was developed by Groth et al [16, 17] based on an expansion about an
ellipsoidal distribution function4 (EDF). This strategy permits the inclusion of fluid stresses in
a non-perturbative fashion. It also results in quasi-linear moment equations that are hyperbolic
for significant ranges of physical conditions, thereby preventing the breakdown of the transport
equations. However, these authors did not set up a Hilbert space for the expansion. They
also did not define an orthogonal basis in this Hilbert space because emphasis was placed
on describing the 35-moment closure. Another observation is that collision processes do not
attempt to make the classical Boltzmann gas approach an EDF.

Now, we take the opportunity to offer some comments on the so-called diffusive and
ballistic regimes. As is well known, diffusive and ballistic phonon transport under small
time and spatial scales play a crucial role in fast-switching electronic devices and pulsed-laser
processing of materials. The Fourier law represents only diffusive transport and predicts an
infinite speed for the propagation of heat. Given the results of [8], we expect that the equations
of nine-moment phonon hydrodynamics are hyperbolic in a convex set of states containing
all quasi-equilibrium states and thus that they lead to a finite heat wave speed. However,
although these equations may be a good model for short time scales and high thermal loads,
they cannot describe ballistic phonon transport in short spatial scales. Instead of suggesting
the hydrodynamic model, Joshi and Majumdar [20] used an equation of phonon radiative
transfer to analyse heat transport under both short time and spatial scales. Salhoumi et al [21],

4 In [18, 19], this distribution is also called the anisotropic Gaussian distribution.
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in turn, considered including higher-order moments of the distribution function in the set of
basic independent variables.

From the viewpoint of this paper, an interesting approach to transient heat transport was
developed by Chen [22, 23]. His approach is called the ballistic-diffusive approximation. It
begins by dividing the distribution function at any point into two components: f = fb + fm.
The first component represents carriers originating from the boundaries and experiencing
out-scattering only, whereas the second one represents those originating from inside the
medium due to the excitation and the boundary contributions converted into scattered or
emitted phonons after absorption. An equation for fb can be extracted from the formalism of
Pomraning [24]. For fm, Chen used the hydrodynamic description that is familiar in thermal
radiation. This description differs from the standard hyperbolic heat conduction, derived on the
basis of the Cattaneo constitutive relation, mainly in the incorporation of an additional ballistic
term. An advantage of using the Chen hybrid method to represent transient heat conduction
from nano to macroscale is that the Cattaneo equation can always be replaced by a more
accurate hydrodynamic model. For example, one can employ the four-moment system [7] or
the equations of nine-moment hydrodynamics in place of the Cattaneo constitutive relation.
Of course, further investigation of these issues may well represent our best opportunity to
gain further insight into the nature of hybrid approaches, and such investigations are presently
being pursued.

We finally mention the following. For the sake of simplicity, we ignore most of the
intricacies of the phonon model. No distinction is made between longitudinal and transverse
phonons. The dispersion relation for all three types of phonons has the form ω = c|k|, where
c is the constant Debey speed. We let the components of the wave vector k range from −∞
to +∞.

Our paper is organized as follows. Section 2 is devoted to a brief treatment of the more
relevant aspects of phonon kinetics. Section 3 first sets up a Hilbert space for the expansion
and then defines an orthogonal basis in this Hilbert space. Section 4 shows how to relate the
obtained expansion coefficients to the energy density, the heat flux and the deviatoric part of
Mij . Section 5 centres around nine-moment phonon hydrodynamics. Section 6 is for final
remarks. The auxiliary technical material is included as appendices A and B.

2. Phonon kinetics

The fundamental equation of phonon kinetic theory is the BP equation [4]. This equation
governs the time evolution of the distribution function f describing the number density of
phonons at position (xi) having wave vector k and is given by

∂tf + cgi∂if = J (f ), (2.1)

where

∂t := ∂

∂t
, ∂i := ∂

∂xi
. (2.2)

Here J (f ) is the collision term and (gi) are the components of a unit vector g in the direction
of k. One knows fully well that J (f ) can be decomposed as

J (f ) = Jr(f ) + Jn(f ), (2.3)

where Jr(f ) and Jn(f ) are the collision terms representing the rates of change of f produced by
resistive and normal processes, respectively. These collision terms must satisfy the conditions
[1–3]
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|k|Jr(f ) d3k = 0, (2.4a)

∫
|k|Jn(f ) d3k = 0,

∫
kiJn(f ) d3k = 0. (2.4b)

Equations (2.4b) tell us that normal processes conserve both energy and momentum, while
equation (2.4a) states that resistive processes conserve only energy.

Since the exact kinetic-theory expressions for Jr(f ) and Jn(f ) are quite formidable,
a more phenomenological approach was proposed by Callaway [5], based on the use of a
relaxation-time approximation of the form

Jr(f ) = 1

τr

(Fo − f ), Jn(f ) = 1

τn

(F∗ − f ), (2.5)

where all the physics is supposed to be included in k-dependent quantities τr and τn that
should be evaluated elsewhere with a specific model. We refer to τr as the relaxation time for
resistive processes and to τn as the relaxation time for normal processes. In order to list the
explicit form of the functions Fo and F∗, we require some preliminary definitions:

ζo := ch̄|k|�o, ζ∗ := ch̄|k|�∗(1 − v∗ · g). (2.6)

The objects (�o,�∗) and v∗ are a set of scalar and vector quantities that may depend on (t, xi)

and h̄ is the Planck constant divided by 2π . With this notation, we obtain for Fo and F∗

Fo := 1

eζ0 − 1
, F∗ := 1

eζ∗ − 1
. (2.7)

Combining (2.4) and (2.5), the values of (�o,�∗, v∗) are then determined by the conditions∫
|k| 1

τr

(Fo − f ) d3k = 0, (2.8a)

∫
|k| 1

τn

(F∗ − f ) d3k = 0, (2.8b)

∫
ki 1

τn

(F∗ − f ) d3k = 0. (2.8c)

Clearly, there are two tendencies: the normal processes will attempt to make the phonon gas
approach F∗ and the resistive processes will try to force it towards Fo. The original basis
for approximation (2.5) was presumably its physically appealing form, corresponding to a
relaxation phenomenon, together with the fact that a suitable choice of (�o,�∗, v∗) allows
the model to represent the conservation laws inherent in the true collision terms Jr(f ) and
Jn(f ). In this context, we mention that the connection between the exact collision operator
and the Callaway model for it was clarified by Simons [6].

Using the above definitions, the BP equation under the relaxation-time approximation is
given by

∂tf + cgi∂if = 1

τr

(Fo − f ) +
1

τn

(F∗ − f ). (2.9)

Before showing that this equation leads to a non-negative entropy production, we first introduce
the following formulae for the entropy density s and the entropy flux �i :

s := −kByh̄3
∫

H(f ) d3k, �i := −ckByh̄3
∫

giH(f ) d3k, (2.10)



9810 Z Banach and W Larecki

where kB is the Boltzmann constant and

y := 3(2πh̄)−3, (2.11a)

H(f ) := f ln f − (1 + f ) ln(1 + f ). (2.11b)

In (2.11a), we need to multiply (2πh̄)−3 by 3; this is because there are three types of phonons
corresponding to one longitudinal and two transversal sound waves. Now, we come to the
entropy law. Multiplying (2.9) by −kByh̄3[dH(f )/df ] and integrating over wave-vector
space yields

∂t s + ∂i�
i = σ := σr + σn, (2.12)

where

σr := −kByh̄3
∫

dH(f )

df

1

τr

(Fo − f ) d3k, (2.13a)

σn := −kByh̄3
∫

dH(f )

df

1

τn

(F∗ − f ) d3k. (2.13b)

For essentially obvious reasons, we call σ the entropy production. With the aid of

dH(f )

df
= − ln

(
1 + f

f

)
(2.14)

and

F∗ − f = F∗(1 + f ) − f (1 + F∗), (2.15)

the quantity σn may be expressed in the form

σn = kByh̄3
∫

1

τn

[F∗(1 + f ) − f (1 + F∗)] ln

(
1 + f

f

)
d3k. (2.16)

Since

ln

(
F∗

1 + F∗

)
= −ζ∗ = −ch̄|k|�∗(1 − v∗ · g), (2.17)

it follows from (2.8b) and (2.8c) that∫
1

τn

(F∗ − f ) ln

(
F∗

1 + F∗

)
d3k = 0. (2.18)

As a consequence of (2.15) and (2.18), we may replace (2.16) by

σn = kByh̄3
∫

1

τn

[F∗(1 + f ) − f (1 + F∗)] ln

[
F∗(1 + f )

f (1 + F∗)

]
d3k. (2.19)

This expression for σn is non-negative because elementary inspection shows that the integrand
is non-negative; it vanishes for f = F∗. Precisely in the same way, we can prove that σr � 0,
the equality holds if and only if f = Fo.

In phonon kinetic theory, one defines the energy density ε, the heat flux qi and the flux of
the heat flux Mij by the integral formulae

ε := cyh̄4
∫

|k|f d3k, (2.20a)

qi := c2yh̄4
∫

kif d3k, (2.20b)

Mij := c3yh̄4
∫

kigjf d3k. (2.20c)
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Since gi = ki/|k|, it is obvious that Mij = Mji . Moreover, from the above definitions of
(ε, q) and the reasoning of [25] it follows that5 |q| � cε. This condition is a strict inequality
unless f is a delta function. The deviatoric part of Mij is given by

Mij := c3yh̄4
∫

k〈igj〉f d3k. (2.21)

As usual, angle brackets denote the symmetric trace-free part, e.g.,

k〈igj〉 := kigj − 1
3 |k|δij , k〈igjgk〉 := kigjgk − 3

5k(iδjk). (2.22)

Round brackets indicate symmetrization and δij stands for the Kronecker delta.
By means of (2.9), we obtain at once

∂tε + ∂iq
i = 0, (2.23a)

∂tq
i +

c2

3
δij ∂j ε + ∂jM

ij = P i
r , (2.23b)

∂tM
ij +

2c2

5
δk〈i∂kq

j〉 + ∂kM
ijk = P ij

r + P ij
n , (2.23c)

where

Mijk := c4yh̄4
∫

k〈igjgk〉f d3k, (2.24a)

P i
r := c2yh̄4

∫
ki 1

τr

(Fo − f ) d3k, (2.24b)

P ij
r := c3yh̄4

∫
k〈igj〉 1

τr

(Fo − f ) d3k, (2.24c)

P ij
n := c3yh̄4

∫
k〈igj〉 1

τn

(F∗ − f ) d3k. (2.24d)

In a similar fashion, it is also possible to derive the equations for Mijk and higher-order
moments of the distribution function. Of course, any finite set consisting of the moment
equations is not a determined system since there appear more variables than equations. It can
be made so, however, by choosing a specific functional form for f = f (k) that depends on
parameters which are taken to be functions of (t, xi), where there are as many parameters
as there are moment equations. For example, in the case of equations (2.23a)–(2.23c), the
closure problem reduces to the problem of finding the distribution function that depends on
(t, xi) through (ε, qi,Mij ). This observation will be of interest to us subsequently.

3. Expansion about an anisotropic Planck function

3.1. Local quasi-equilibrium

We regard as being appropriate to quasi-equilibrium any phase density f such as to be left
unaltered by normal processes:

Jn(f ) = 0. (3.1)

5 For any two wave vectors k and k′, we easily show that k · k′ � |k| |k′|. Multiplying this inequality by
(c2yh̄4)2f (t, xi , k)f (t, xi , k′) and integrating over (k, k′) yields |q|2 � c2ε2.
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From the properties of Jn(f ) we conclude that any such f is of the form

f = F := 1

eζ − 1
, (3.2)

where

ζ := ch̄|k|�(1 − v · g). (3.3)

If f = F , equations (2.8b) and (2.8c) have the simple solution for (�∗, v∗): �∗ = �, v∗ = v.
In what follows, we call F the quasi-equilibrium Planck distribution or the anisotropic Planck
function. This distribution contains the scalar function � = �(t, xi) and the vector function
v = v(t, xi) which are largely at our disposal. Here we fix � and v so as to reproduce the
actual energy density ε and the actual heat flux qi :

ε = cyh̄4
∫

|k|F d3k, qi = c2yh̄4
∫

kiF d3k. (3.4)

Hence we have for � and v

� = χ

ε1/4

(3 + u)1/4

(1 − u)3/4
, v = 3

2 + W

q
cε

, (3.5)

where

χ :=
(

4π5y

45c3

)1/4

, W :=
√

4 − 3

( |q|
cε

)2

, u := |v|2 = 3(2 − W)

2 + W
. (3.6)

Assuming that we know ε and qi , we express � and vi as functions of ε and qi . These
functions were first derived by Larecki [7]. Since � diverges for |q| = cε, we postulate that
|q| < cε. Given (3.5) and (3.6), this postulate yields the inequalities |v| < 1 and 0 � u < 1.
Clearly, u = |v|2 = 0 if and only if |q| = 0.

The closure procedure for the four-moment system is based on F. With the definitions

M
ij

F := c3yh̄4
∫

k〈igj〉F d3k, P i
rF := c2yh̄4

∫
ki 1

τr

(Fo − F) d3k, (3.7)

this closure procedure may be stated simply. Let Mij and P i
r in (2.23b) have the form

Mij = M
ij

F , P i
r = P i

rF . (3.8)

Having also (2.23a), this results in the system of equations from which the evolution of (ε, qi)

can in principle be determined:

∂tε + ∂iq
i = 0, (3.9a)

∂tq
i + ∂j

(
c2

3
δij ε + M

ij

F

)
= P i

rF . (3.9b)

Such is indeed the case because equations (3.7) provide the motivation for expressing M
ij

F and
P i

rF in terms of ε and qi . Explicitly, given (3.2) and (3.3) as well as (3.5) and (3.6), we obtain
for M

ij

F ,

M
ij

F = 4c2ε

3 + u
v〈ivj〉 = 3c

2cε +
√

4c2ε2 − 3|q|2 q〈iqj〉. (3.10)

Moreover, when τr does not depend on k and τr = τr(ε), (3.4) and (3.7) yield P i
rF in the form

P i
rF = − 1

τr

qi . (3.11)
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More details on the four-moment system (3.9) can be found in [7]. There, it was shown how
the closure by entropy maximization leads naturally to both the anisotropic Planck function
and the formulae equivalent to (3.5), (3.6) and (3.10).

If f satisfies the condition Jr(f ) = 0, then f is an equilibrium Planck distribution given
by

f = FE := 1

eζE − 1
, (3.12)

where

ζE := ch̄|k|�E. (3.13)

Considering the case in which

cyh̄4
∫

|k|FE d3k = ε, (3.14)

we find that

�E = χ

ε1/4
. (3.15)

A limitation of the distribution function FE is that it admits no heat flux. Consequently, the
use of this function for the expansion leads to the theory which treats the heat flux as a small
perturbative quantity.

3.2. Perturbations and the weighted Hilbert space

If τn � τr , we can assume that f is close to F. Then it is natural to define the perturbation
with respect to F and thus to look for a distribution function in the form

f = F [1 − ch̄|k|�(1 + F)ϕ] , (3.16)

where

ϕ = ϕ(t, xi, k) = ϕ(t, xi, |k|, g) = ϕ(t, xi, ζ, g). (3.17)

In (3.17), we have proposed the passage from k to (ζ, g). Because of (3.3), this passage is a
diffeomorphic change of variables if |k| �= 0:

k = |k|g = ζ

ch̄�(1 − v · g)
g. (3.18)

Setting R+ := (0,∞) and denoting by S2 the unit sphere, we observe that ζ ∈ R+ and g ∈ S2.
Therefore, for each (t, xi), the perturbation ϕ is a function of the three independent variables
(ζ, g) ∈ R+ × S2.

In order to construct the appropriate Hilbert space for ϕ, we introduce the following
objects:

V1 := V1(v · g) := 1

2π(1 − v · g)5
, (3.19a)

V2 := V2(ζ ) := 15

4π4
ζ 4F(1 + F) = 15

4π4

ζ 4 eζ

(eζ − 1)2
. (3.19b)

Using these objects, the scalar product between two perturbations is defined by

〈ϕ1 |ϕ2〉 :=
∫

S2

∫
R+

V1V2ϕ1ϕ2 dζ d2g, (3.20)
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where d2g is the incremental solid angle. If θ ∈ [0, π ] denotes the polar angle (cos θ =
v · g/|v|) and φ ∈ [0, 2π) denotes the azimuthal angle, then d2g can be identified with
sin θ dθ dφ. Let H be the set of all the perturbations which are square-integrable on R+ × S2

with weight V1V2. We find it convenient to refer toH as the weighted Hilbert space. Since 〈· | ·〉
is the scalar product in H, the norm of ϕ ∈ H is the square root of 〈ϕ |ϕ〉; thus ||ϕ|| := √〈ϕ |ϕ〉.

We now show that the norm ||·|| can be used to evaluate the entropy density s in the
neighbourhood of quasi-equilibrium. Substitution of (3.16) into (2.11b) leads to an expression
for the quantity H(f ) which is a function of the perturbation ϕ. Because of the complicated
nature of this expression, the entropy density s as defined by (2.10) is very difficult to analyse.
In the neighbourhood of quasi-equilibrium, however, a simple approximation can be obtained
by using the first three terms of the expansion of H(f ):

H(f ) = H(F) + ch̄|k|ζ�F(1 + F)ϕ + 1
2c2h̄2|k|2�2F(1 + F)ϕ2 + O(ϕ3). (3.21)

In view of this approximation to H(f ), the structure of (2.10) may be further exposed by a
change to quasi-equilibrium coordinates in the integral. If we employ the quasi-radial variable
ζ and the unit vector g, so that k is given by (3.18) and

d3k = |k|2 d |k|d2g = ζ 2

c3h̄3�3(1 − v · g)3
dζ d2g, (3.22)

then (2.10) takes the form

s = sF

[
1 − 3

2 (1 − u)2
(〈1 − v · g |ϕ〉 + 1

2 ||ϕ||2
)]

, (3.23)

where

sF := −kByh̄3
∫

H(F) d3k = 4kBε�
1 − u

3 + u
. (3.24)

In the process of deriving the above approximate formula for s, we have used (3.5), (3.6),
(3.19), (3.20) and (A.1). Introducing ϕ instead of f , we easily verify that (2.20a), (2.20b) and
(3.4) imply the following conditions on ϕ:

〈1 |ϕ〉 = 0, 〈gi |ϕ〉 = 0; (3.25)

thus

〈1 − v · g |ϕ〉 = 0. (3.26)

With the aid of these results, (3.23) gives

s = sF

[
1 − 3

4 (1 − u)2||ϕ||2
]
, (3.27)

showing the small deviations of s from sF to be proportional to the square root of 〈ϕ |ϕ〉.

3.3. Expansion in terms of orthogonal functions

Before constructing an orthogonal basis in H, we first define H1 (H2) to be the Hilbert space
of real functions which are square-integrable on S2 (R+) with weight V1 (V2). The scalar
products in H1 and H2 are given by

(β1 |β2) :=
∫

S2
V1β1β2 d2g (β1 ∈ H1, β2 ∈ H1) (3.28a)

and

[ρ1 |ρ2] :=
∫

R+

V2ρ1ρ2 dζ (ρ1 ∈ H2, ρ2 ∈ H2), (3.28b)
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respectively. Let β1 and β2 be the tensor functions on S2. Then we set

(β1 |β2) :=
∫

S2
V1(β1 ⊗ β2) d2g. (3.29)

For real functions, (3.29) reduces to (3.28a).
If we orthogonalize the set of non-negative powers of ζ ,

{ζ n} := { ζ n | n = 0, 1, 2, . . . ,∞}, (3.30)

in the sense explained in [26, p 23], we obtain a set of polynomials,

{�n} := {�n(ζ ) | n = 0, 1, 2, . . . ,∞}, (3.31)

uniquely determined by the following two conditions: (i) �n(ζ ) is a polynomial of precise
degree n in which the coefficient of ζ n is positive; (ii) {�n} is the orthonormal system, i.e.,
[�n |�n] = δnm. Because of (A.1), we obtain for �0(ζ )

�0(ζ ) = 1. (3.32)

Using the lemma of Dijkstra and van Leeuwen as formulated in [27, p 468], it is possible to
prove that the system {�n} forms an orthonormal basis in H2.

As a next step, we define g⊥ and γ by

g⊥ := g − 1

u
(v · g)v, γ := δ − 1

u
(v ⊗ v), (3.33)

where δ is the unit tensor. We may interpret g⊥ as the part of g orthogonal to v and γ as the
projection tensor. The components of g⊥ and γ are

gi
⊥ = gi − 1

u
(v · g)vi, γ ij = δij − 1

u
vivj . (3.34)

Now, if we orthogonalize the set of tensorial powers of g ,

{⊗ng} := { ⊗ng | n = 0, 1, 2, . . . ,∞}, (3.35)

we obtain a set of tensor functions,

{Πn} := { Πn(g, v) | n = 0, 1, 2, . . . ,∞}, (3.36)

such that (Πn |Πm) = 0 for n �= m. The first few functions Πn can be expressed as

Π0 := �0 := 1 − u, (3.37a)

Π1 := �1 := v · g − u(5 + u)

3(1 + u)
, (3.37b)

Π2 := √
1 − u g⊥, (3.37c)

Π3 := �3 := 1

3 − u
[1 + u − 2(v · g)] − 1

2
|g⊥|2, (3.37d)

Π4 := (v · g − u)g⊥, (3.37e)

Π5 := g⊥ ⊗ g⊥ − 1

2
|g⊥|2γ. (3.37f)

The components of Π2,Π4 and Π5 are

�i
2 = √

1 − u gi
⊥, (3.38a)

�i
4 = (v · g − u)gi

⊥, (3.38b)

�
ij

5 = gi
⊥g

j

⊥ − 1
2 |g⊥|2γ ij . (3.38c)
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Note that

�i
2 vi = �i

4vi = 0, (3.39a)

�
ij

5 = �
ji

5 , �
ij

5 vj = 0, �
ij

5 γij = 0. (3.39b)

Here and throughout this paper, we adopt the useful convention whereby the component
indices are lowered and raised with δij and δij , respectively. The system {Πn} forms a basis
in H1, in the sense that β ∈ H1 can be expanded as

β =
∞∑

n=0

βn ·Πn, (3.40)

where the tensor quantities βn are the expansion coefficients and the dot stands for the inner
product of the tensors involved.

For the perturbation ϕ ∈ H, since {Πm �n} is a complete set of orthogonal functions, we
have

ϕ =
∞∑

n=0

∞∑
m=0

(ϕn|m ·Πm)�n, (3.41a)

or using a component notation,

ϕ =
∞∑

n=0

(
ϕn|0 �0 + ϕn|1 �1 + ϕ

n|2
i �i

2 + ϕn|3 �3 + ϕ
n|4
i �i

4 + ϕ
n|5
ij �

ij

5 + · · · )�n. (3.41b)

The expansion coefficients ϕn|m are functions of (t, xi) and the dependence of ϕ on (t, xi) is
contained in

ϕn|m = ϕn|m(t, xi) (3.42)

and

Πm = Πm(g, v(t, xi)). (3.43)

As a consequence of (3.39a) and (3.39b), it is possible to assume without any loss of generality
that

ϕ
n|2
i vi = ϕ

n|4
i vi = 0, (3.44a)

ϕ
n|5
ij = ϕ

n|5
ji , ϕ

n|5
ij vj = 0, ϕ

n|5
ij γ ij = 0. (3.44b)

According to (3.37a)–(3.37c) and (3.41), equations (3.25) are equivalent to the conditions

ϕ0|0 = 0, ϕ0|1 = 0, ϕ
0|2
i = 0. (3.45)

With the exception of these conditions, the expansion coefficients ϕn|m are arbitrary except for
certain inequalities that express the fact that (1 − u) ||ϕ|| is small6 (see (3.27) and (3.51)). The
first significant coefficients are the coefficients

(
ϕ0|3, ϕ0|4

i , ϕ
0|5
ij

)
which can be used to evaluate

the deviation of Mij from M
ij

F (see section 4).

6 For example, abbreviating (ϕn|m · ϕn|m)1/2 as |ϕn|m|, it follows from (1 − u) ||ϕ|| � 1 that |ϕn|m| � 1.



Nine-moment phonon hydrodynamics based on the modified Grad-type approach 9817

3.4. Expansion coefficients and the entropy density

Expansion (3.41) enables us to relate an approximate expression for the entropy density s,
namely (3.27), to the expansion coefficients ϕn|m. As a first step in the explicit evaluation of
this expression in terms of ϕn|m, it is convenient to introduce the following quantities:

R := 1

2
√

u
ln

(
1 +

√
u

1 − √
u

)
, (3.46a)

A := 1

u2

[
(1 − u)2 R +

1

3
(5u − 3)

]
, (3.46b)

D := 2

3
− A, E := 3(3 − u)A − 4. (3.46c)

In view of (3.6), we may think of these quantities as being the functions of ε and q.
Definitions (3.46a) and (3.46b) are readily understood in the case when u > 0 (i.e., when
|q| �= 0). To get precise values for R and A (and hence for D and E) as u approaches 0
(0 � u < 1), it need only be observed that

R =
∞∑

n=0

1

2n + 1
un, (3.47a)

A =
∞∑

n=0

8

(2n + 1)(2n + 3)(2n + 5)
un. (3.47b)

Thus, if u = 0, the values of (R,A,D,E) are

R = 1, A = 8
15 , D = 2

15 , E = 4
5 . (3.48)

Because of this, there is no true singularity in (3.46) and the quantities R,A,D and E are
regular, continuously differentiable functions of ε and q .

Now, using (A.5), we obtain

(Π0 |Π0) = 2(1 + u)

(1 − u)2
, (3.49a)

(Π1 |Π1) = 2u(3 − u)

9(1 + u)(1 − u)2
, (3.49b)

(
Πi

2

∣∣Πj

2

) = 2

3(1 − u)2
γ ij , (3.49c)

(Π3 |Π3) = E

6(3 − u)(1 − u)2
, (3.49d)

(
Πi

4

∣∣Πj

4

) = uD

(1 − u)2
γ ij , (3.49e)

(
Πij

5

∣∣Πkl
5

) = A

4(1 − u)2
(γ ik γ jl + γ il γ jk − γ ij γ kl), etc. (3.49f)

It follows from these formulae that

A > 0, D > 0, E > 0 (3.50)
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as long as 0 � u < 1. With the aid of (3.41) and (3.49), the approximate formula (3.27) can
be written in the form

s = sF

{
1 −

∞∑
n=0

[
3

2
(1 + u) |ϕn|0|2 +

u(3 − u)

6(1 + u)
|ϕn|1|2 +

1

2
|ϕn|2|2 +

E

8(3 − u)
|ϕn|3|2

+
3

4
uD |ϕn|4|2 +

3

8
A |ϕn|5|2 + · · ·

]}
, (3.51)

where

|ϕn|m| :=
√

ϕn|m · ϕn|m. (3.52)

Consequently, expansion (3.41) diagonalizes the (linearized) entropy. Neglecting in (3.51) the
terms that involve the expansion coefficients ϕn|m other than (ϕ0|3, ϕ0|4, ϕ0|5), we shall use
the resulting expression for s in [8] to specify the region of hyperbolicity for the nine-moment
system (5.22) in the one-dimensional case. Then the solutions to (5.22) have rotational
symmetry about the x-axis (x := x1) and the reduced system contains only three independent
gas-state variables.

4. Connection between moments and expansion coefficients

In this section, we are concerned solely with the problem of relating Mij or Mij − M
ij

F to(
ϕ0|3, ϕ0|4

i , ϕ
0|5
ij

)
. It is out of place here to discuss similar problems for Mijk and higher-order

moments of the distribution function.
Remembering that Mij

F is characterized by (3.7) and (3.10), it follows from (2.21), (3.16)–
(3.20), (3.22), (3.5) and (3.6) that

Nij := Mij − M
ij

F = Mij − 4c2ε

3 + u
v〈ivj〉 = Mij − 3c

2cε +
√

4c2ε2 − 3|q|2 q〈iqj〉 (4.1)

can be written as

Nij = −6c2ε
(1 − u)3

3 + u
〈gigj |ϕ〉. (4.2)

Then equations (3.41) and (3.49), in conjunction with the conditions (3.45) and the relations

gigj = �0 �
ij

5 + 2

[
1√

1 − u
�0 �

(i
2 +

1

u
�0 �

(i
4

]
vj)

+
1

u

[
1 + 5u

3(1 − u2)
�0 �0 +

4

3 − u
�0 �1 + 2�0 �3

]
vivj

+
1

2

[
2

3(1 + u)
�0 �0 − 4

3 − u
�0 �1 − 2�0 �3

]
γ ij (4.3)

and [�0 |�n] = δ0n, enable us to express

Ñ
ij

:= 1

3c2ε

(
3 + u

1 − u

)
Nij (4.4)

in the form

Ñ
ij = −A γ ikγ jl ϕ

0|5
kl − 4D v(iγ j)k ϕ

0|4
k +

E

3(3 − u)

(
γ ij − 2

u
vivj

)
ϕ0|3. (4.5)
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Using this formula for Ñ
ij

, we easily obtain

ϕ0|3 = −3(3 − u)

2uE
Ñ

kl
vkvl, (4.6a)

ϕ
0|4
i = − 1

2uD

(
Ñ ij vj − 1

u
Ñ

kl
vkvlvi

)
, (4.6b)

ϕ
0|5
ij = − 1

A

[
Ñ

kl
vkvl

(
1

2
γij +

1

u
vivj

)
− 2

u
vkÑk(ivj) + Ñ ij

]
, (4.6c)

where now u �= 0.
Since equations (4.5) and (4.6) are ill-defined if u = 0, our purpose here is to construct

the equivalent relations which have limits as the quantity u = |v|2 approaches 0. Defining the
new tensor variable λij by

λij := − 1

6
ϕ0|3

(
γij − 2

u
vivj

)
+ ϕ

0|4
(i vj) + ϕ

0|5
ij , (4.7)

we first observe that the properties of this variable are very much analogous to those of Mij :

λij = λji, δij λij = 0. (4.8)

In view of (3.6) and (3.34), we also observe that the expansion coefficients
(
ϕ0|3, ϕ0|4

i , ϕ
0|5
ij

)
can be expressed in terms of λij :

ϕ0|3 = −3λkl γ
kl, (4.9a)

ϕ
0|4
i = 2

u
(λij v

j + λkl γ
klvi), (4.9b)

ϕ
0|5
ij = λij − 2

u
vkλk(ivj) − λkl γ

kl

(
1

u
vivj +

1

2
γij

)
. (4.9c)

Substituting the above formulae into (4.5) yields

Ñ
ij = −A λij − 8

3 + u
B vkλ

〈i
k vj〉 − C λkl v

kvl v〈ivj〉, (4.10)

where

B := 3 + u

4u

(
8

3
− 5A

)
, (4.11a)

C := 8(4u − 21) + 105(3 − u)A

6u2(3 − u)
. (4.11b)

Recalling (3.46) and (3.6), the coefficients B and C are well-behaved as functions of (ε, q)

near u = 0. Indeed, a direct calculation using (3.47b) shows that B and (3 − u)C/3 may be
expanded in absolutely convergent power series in u valid for u < 1. In the limit u → 0, these
series expansions lead to

B = − 2
7 , C = 0. (4.12)

Given the useful identities (B.3) and (B.4), we are able to transform relation (4.10) for Ñ
ij

into the following relation for λij :

λij = − 1

A

[
Ñ

ij − 1

2D

(
4

3 + u
B vkÑ

〈i
k vj〉 +

K

6E
Ñkl v

kvl v〈ivj〉
)]

, (4.13)
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where

K := 1

u2
[45(3 − u)A2 + 6(3u − 17)A + 16]. (4.14)

In the limit u → 0, (4.14) becomes

K = − 64
147 . (4.15)

The net upshot of these calculations may be stated very neatly. Instead of defining the variable
λij by (4.7) valid for u �= 0, it is also possible to define λij as a regular function of (ε, q) and
Mij ; see (4.13), (4.4) and (4.1) together with (B.5), (4.14) and (5.10)–(5.13). This function
reduces to λij = −15Mij/8c2ε as u approaches 0.

In (3.41), the part of ϕ which contains only a contribution from the expansion coefficients(
ϕ0|3, ϕ0|4

i , ϕ
0|5
ij

)
is given by

ψ := ϕ0|3 �3 + ϕ
0|4
i �i

4 + ϕ
0|5
ij �

ij

5 . (4.16)

Remarkably, employing (3.37d)–(3.37f) and (4.9), we can write ψ in the form

ψ = λij

[
gi (gj − 2vj ) +

2

3 − u
(2 − v · g) vivj

]
. (4.17)

Upon relating λij to (ε, qi,Mij ) and using (5.13) and (B.5), ψ ∈ H1 is to be expressed in
terms of the unit vector g := k/|k| and the physical variables (ε, q,Mij ).

5. Nine-moment closure

5.1. Specification of the relaxation times

Given (2.5)–(2.8) and (3.12)–(3.15), we shall treat the collision term Jn(f ) = (F∗ − f )/τn

with great care, but shall handle the collision term Jr(f ) = (Fo − f )/τr schematically, as in
[12], by assuming an effective relaxation tima τr which depends on ε and is independent of k:

τr = τr(ε). (5.1)

In that case, the quantity �o can be identified with �E = χ/ε1/4 (see (3.6) and (3.15)) and
this ensures that the rate of change of the energy density due to resistive processes is zero.

For our purposes, we postulate that τn is independent of Mij and depends on (|k|, g) and
(ε,�∗, v∗) as

τn = τn(ε, ζ∗), (5.2)

where ζ∗ is defined by (2.6)–(2.8). Given (3.15), as a useful example of the above dependence
of τn on (|k|, g) and (ε,�∗, v∗), we consider the relation

τn = α�5
E ζm−5

∗ = α
( χ

ε1/4

)5
ζm−5
∗ (5.3)

in which α > 0 and 2 < m � 4. Here α is a constant and m is an exponent determined by the
interaction mechanism (see, e.g., [28]). If |v∗| � 1, then ζ∗ ∼= ch̄ |k|�∗ and (5.3) reduces to

τn = α�5
E (ch̄|k|�∗)m−5. (5.4)

It is natural to interpret T∗ := 1/kB�∗ as the relaxation temperature [6]. In the case
when this temperature does not differ significantly from the local equilibrium temperature
TE := 1/kB�E , we see that (5.4) is just the equivalent of Herring’s formula [29].

The typical relaxation time τn tends to ∞ as |k| → 0, and long-wavelength phonons
(i.e., phonons with |k| ∼= 0) have a very long lifetime. As was already pointed out by
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Jäckle [30] and Buot [31], an important consequence of this behaviour of τn is the non-
existence of a gap in the eigenvalue spectrum of the linearized collision operator Ln and the
breakdown of the usual justification of the hydrodynamic equations by means of perturbation
theory. In order to derive phonon hydrodynamics from the linearized BP equation, the
distribution of the low-lying eigenvalues of Ln must be taken into account.

However, there are physical arguments for the validity of the hydrodynamic description.
First, the hydrodynamic equations for local temperature and drift velocity, which were
proposed by many authors in spite of the mathematical problems originating in the gapless
spectrum ofLn, were able to describe observations associated with second sound and Poiseuille
flow in a satisfactory way, at least qualitatively (see, e.g., [1–3]). Second, considering
the smallness of the phase space of the long-wavelength phonons, Beck [32] arrived at the
following result in connection with the low-lying eigenvalues of Ln. As long as the relation
(5.4) holds true and 2 < m � 4, the fact that τ−1

n reaches values arbitrarily close to zero will
not have a strong influence on the hydrodynamic equations. Physically, the inequality m > 2
means that the lifetime τn of long-wavelength phonons diverges with a power that is smaller
than the power with which their phase space goes to zero. Herring [29] and Holland [33]
suggested that the values m = 4 for transverse and m = 3 for longitudinal phonons seem most
probable in crystals of high symmetry.

If 2 < m � 4, the major contribution to the integrals in (2.20) stems from wave vectors
of thermal phonons, i.e., from wave vectors such that |k| ∼= kth := kBTE/ch̄. Because of this,
one can try to restrict the Brillouin zone to thermal phonons making the main contribution to
quantities like energy density, etc and treat Ln as if it had a spectral gap [34]. Relation (5.4)
is then replaced by

τ̄n := α(kBTE)−m (ch̄kth)
m−5 (5.5)

and, in the case when normal processes dominate the phonon distribution, we may assume
that

τ̄n � τr . (5.6)

The physical meaning of this inequality is clear: during the first time period, the normal time,
the distribution relaxes to a quasi-equilibrium Planck distribution, and then during the longer,
resistive time, the distribution settles into an equilibrium Planck distribution.

5.2. The moment flux and collision terms

An arbitrary local state of the phonon gas is specified by primary variables (ε, q) and by
additional variables (ϕn|m). For complete specification of a non-equilibrium state the set of
additional variables needed is, in general, infinite. In order to arrive at a manageable system
of evolution equations for (ε, q, ϕn|m), the infinite set (ϕn|m) has to be truncated. Following
Grad [9,10], we assume that the phonon gas is sufficiently close to local quasi-equilibrium for
the function ϕ to be approximated by three terms of its expansion:

ϕ = ψ := ϕ0|3 �3 + ϕ
0|4
i �i

4 + ϕ
0|5
ij �

ij

5 . (5.7)

Adopting this approximation, we obtain for f ,

f = F [1 − ch̄|k|�(1 + F)ψ] , (5.8)

where � is given by (3.5). Thus, the variables defining the state of the phonon gas are(
ε, qi, ϕ0|3, ϕ0|4

i , ϕ
0|5
ij

)
or (ε, qi,Mij ) which are nine in number. This leads to a description

involving only quantities that appear in the fundamental balance equations (2.23a) and (2.23b).
If τ̄n � τr , the classical formulation of phonon hydrodynamics starts from the evolution
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equations for the energy density ε and the heat flux q. These quantities are slowly varying,
since they are not altered by the normal processes. The higher moment Mij , however, tends
to its local quasi-equilibrium value M

ij

F on the fast time scale determined by τ̄n. Whereas
many authors (see, e.g., [14, 15]) have studied the elimination of a fast variable Mij in order to
obtain a description of the phonon gas in terms of slow variables (ε, q), our aim is the opposite
one: we want to derive the evolution equation for Mij .

The moment flux Mijk is calculated by inserting (5.8) into (2.24a), using identity (4.17)
and relations (4.13), (4.4), (4.1), (3.5) and (3.6). These manipulations, when combined with
the auxiliary formulae (A.1)–(A.6) and (B.1)–(B.4), lead after some algebra to

Mijk = − S

4ε2E
q〈iqj qk〉 − 1

A

[
3B

ε
q〈iMjk〉 − 1

c2ε3D

×
(

2L qlM
〈i

l qj qk〉 − Q

c2ε2E
Mlmqlqm q〈iqj qk〉

)]
, (5.9)

where

B := 3 + u

4u

(
8

3
− 5A

)
, (5.10a)

D := 2

3
− A, E := 3(3 − u)A − 4, (5.10b)

L :=
(

3 + u

4

)3 1

u2

[
15

8
(3 + u)A2 − 13A +

16

3

]
, (5.10c)

Q :=
(

3 + u

4

)5 1

u3

[
45

4
(1 − u2)A3 + 3(19u − 27)A2 − 4(7u − 15)A − 32

3

]
, (5.10d)

S :=
(

3 + u

4

)2 1

u

[
45

2
(1 − u)(3 − u)A2 + 6(39 − 23u)A − 16(9 − 5u)

]
. (5.10e)

Because of (3.46a) and (3.46b), we find

A = 1

u2

[
(1 − u)2

2
√

u
ln

(
1 +

√
u

1 − √
u

)
+

1

3
(5u − 3)

]
. (5.11)

Inspection shows that the new coefficients (L,Q, S) tend to the limits

L = 3

980
, Q = − 27

377300
, S = 81

35
(5.12)

as the quantity u approaches 0. The limits for (A,B,D,E) are given by (3.48) and (4.12).
Using (3.6) yields

u = 3
(
2cε −

√
4c2ε2 − 3|q|2 )

2cε +
√

4c2ε2 − 3|q|2 . (5.13)

With equations (5.11) and (5.13), we clearly see the following: substitution of (5.10) into (5.9)
enables us to represent Mijk as a function of (ε, q) and Mij .

We now turn to the collision terms
(
P i

r , P
ij
r , P

ij
n

)
. The case when τr is a function of ε

alone is particularly simple since then the collision terms P i
r and P

ij
r are easily shown to be

P i
r = − 1

τr

qi, P ij
r = − 1

τr

Mij . (5.14)

Note that the integrations in (2.24b) and (2.24c) can be performed explicitly. The more difficult
problem with τn allowed to be a function of ε and ζ∗ (see (5.2)) can also be solved, but only
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in the nine-moment approximation. However, before proceeding further, we must analyse
conditions (2.8b) and (2.8c) in which f is assumed to have the form (5.8). The validity of
these conditions is ensured by setting

�∗ = � = χ

ε1/4

(3 + u)1/4

(1 − u)3/4
, v∗ = v =

(
3 + u

4

)
q
cε

. (5.15)

Then, since ζ∗ = ζ and F∗ = F , (2.8b) and (2.8c) are equivalent to〈
1

τn

∣∣∣∣ψ
〉

= 0,

〈
1

τn

gi

∣∣∣∣ ψ
〉

= 0. (5.16)

The proof that equations (5.16) hold true is immediate and is based on the fact that〈
1

τn

∣∣∣∣ψ
〉

= 1

τ̃n (1 − u)
X , (5.17a)

〈
1

τn

gi

∣∣∣∣ψ
〉

= 1

τ̃n

[(
5 + u

3(1 − u2)
X +

1

u
Y

)
vi +

1√
1 − u

Z i

]
, (5.17b)

where

τ̃n :=
[

1

τn

∣∣∣∣ 1

]−1

= 4π4

15

(∫ ∞

0

ζ 4

τn(ε, ζ )

eζ

(eζ − 1)2
dζ

)−1

, (5.18a)

X := ϕ0|3 (�0 |�3) + ϕ
0|4
j

(
�0

∣∣�j

4

)
+ ϕ

0|5
kl

(
�0

∣∣�kl
5

) = 0, (5.18b)

Y := ϕ0|3 (�1 |�3) + ϕ
0|4
j

(
�1

∣∣�j

4

)
+ ϕ

0|5
kl

(
�1

∣∣�kl
5

) = 0, (5.18c)

Z i := ϕ0|3 (
�i

2

∣∣�3
)

+ ϕ
0|4
j

(
�i

2

∣∣�j

4

)
+ ϕ

0|5
kl

(
�i

2

∣∣�kl
5

) = 0. (5.18d)

Here, it may be noted that the effective relaxation time τ̃n for normal processes depends on ε

through τn (see (5.18a)). At this stage, the combination of (2.24d), (5.8) and (5.15) yields an
expression for P

ij
n in the form

P ij
n = 6c2ε (1 − u)3

τ̃n(3 + u)
(gigj |ψ). (5.19)

Let us now use (4.16) and (3.41b). With the aid of

(gigj |ψ) = 〈gigj |ϕ〉 (5.20)

which is a consequence of (3.32) and (4.3), we finally obtain from (4.1) and (4.2) that

P ij
n = − 1

τ̃n

(
Mij − 3c

2cε +
√

4c2ε2 − 3|q|2 q〈iqj〉
)

. (5.21)

Given (5.18a), the collision term P
ij
n is thus represented as a linear function of Mij and a

nonlinear function of (ε, q).
Insertion of relations (5.9), (5.14) and (5.21) into system (2.23) leads to the differential

equations for (ε, q) and Mij :

∂tε + ∂iq
i = 0, (5.22a)

∂tq
i + ∂j

(
c2

3
δij ε + Mij

)
= − 1

τr

qi, τr = τr(ε), (5.22b)
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∂tM
ij + ∂k

{
2c2

5
δk〈iqj〉 − S

4ε2E
q〈iqj qk〉 − 1

A

[
3B

ε
q〈iMjk〉

− 1

c2ε3D

(
2L qlM

〈i
l qj qk〉 − Q

c2ε2E
Mlmqlqm q〈iqj qk〉

)]}

= − 1

τr

Mij − 1

τ̃n

(
Mij − 3c

2cε +
√

4c2ε2 − 3|q|2 q〈iqj〉
)

, (5.22c)

where the coefficients (A,B,D,E,L,Q, S) depend on (ε, q) according to the relations
(5.10)–(5.13) and the effective relaxation time τ̃n = τ̃n(ε) is defined by (5.18a). We call these
differential equations, which originate from the modified Grad-type approach, the equations
of nine-moment phonon hydrodynamics. System (5.22) is based on an expansion about an
anisotropic Planck function and thus permits the inclusion of the heat flux in a non-perturbative
fashion. Precisely speaking, with the exception of the natural condition |q| < cε, there are
effectively no unphysical limitations on the value of |q|, i.e., one can handle problems with
large components of the heat flux. This is a definite improvement over previous approaches
[12–15] which only make allowances for small deviations in the heat flux from zero. Also,
the explicit presence of two relaxation times (τr , τ̃n) in equation (5.22c) introduces important
physical features not found in the four-moment system (3.9). First of all, unlike the latter,
the nine-moment system is expected to be a useful tool in dealing with both normal and
resistive processes. Moreover, assuming a separation of two time scales (τ̃n � τr), one
can treat phenomena at frequencies comparable to the inverse of the normal time. However,
since the infinite set (ϕn|m) was truncated and the flux Mijk and the collision term P

ij
n were

approximated by linear functions of Mij , a limitation of the nine-moment system is that it is
incapable of representing the effects of large departures from local quasi-equilibrium.

In the work of Banach and Piekarski [12], the nine-moment closure was based on the
following relations for Mijk and P

ij
n :

Mijk = 45

28ε
q〈iMjk〉, P ij

n = − 1

τ̃n

Mij . (5.23)

These relations are consistent with the present results, in the sense that they can be obtained
by evaluating the right-hand sides of (5.9) and (5.21) to first order in the heat flux. Then the
terms in (5.9) and (5.21) containing Mlmqlqm q〈iqj qk〉, qlM

〈i
l qj qk〉, q〈iqj qk〉 and q〈iqj〉 are

neglected and the coefficients (A,B) in (5.9) are given by (3.48) and (4.12). For a linear model
in which Mijk = 0, a further simplification of (5.22c) is possible and this has been exploited
by Dreyer and Struchtrup [13], with a view to an interpretation of the experimental data on heat
pulses in crystals. Finally, a word should be said about the limit |q| → cε. Equations (5.9)
and (5.21) become7

Mijk = − 4

ε2
q〈iqj qk〉 +

3

ε
q〈iMjk〉 +

3

2c2ε3

(
qlM

〈i
l qj qk〉 +

1

c2ε2
Mlmqlqm q〈iqj qk〉

)
,

(5.24a)

P ij
n = − 1

τ̃n

(
Mij − 1

ε
q〈iqj〉

)
(5.24b)

as |q| approaches cε. This leads to the conclusion that, for all values of |q|, the flux Mijk and
the production term P

ij
n are finite.

7 Formally, in the limit |q| → cε, we obtain S/E = 16, A = 2/3, B = −2/3, L/D = 1/2 and Q/DE = −1.
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6. Final remarks

Our modification of the Grad-type approach, which begins by expanding the phase density
about an anisotropic Planck function, may be used to present a systematic derivation of a whole
hierarchy of closed systems of moment equations. The system of equations for the energy
density and the heat flux is the first, non-perturbative member of this hierarchy of closures.
Here we have investigated in detail the next member, the nine-moment closure that involves the
deviatoric part of the flux of the heat flux as an extra gas-state variable. In addition to this, our
reasoning shows that the method of Grad can be generalized in the following sense: instead
of using the equilibrium distribution for the expansion, one can use for it any non-equilibrium
distribution that maximizes the Boltzmann entropy under the constraints of fixed values of
appropriately chosen moments [35].

An alternative strategy for obtaining determined systems of moment equations is based
on the closure by entropy maximization [35]. The main advantage of using this closure
prescription is that if one expresses the moments and the collision operator moments as
functions of the Lagrange multipliers, the evolution equations for these multipliers are
then automatically symmetric hyperbolic at every order of truncation. Clearly, in order to
derive transport equations for the hydrodynamic quantities, which are traditionally of interest,
we need to relate the Lagrange multipliers to the moment densities. However, even in
the simplest physically interesting situation of a one-dimensional, rotationally symmetric
geometry applied to the nine-moment phonon system (then only three independent gas-state
variables are involved), one cannot express analytically the Lagrange multipliers in terms of
moment densities without first performing a perturbative expansion of various non-equilibrium
quantities as is done, e.g., in rational extended thermodynamics [35]. Most conventional
methods propose to introduce perturbative expansions of the Lagrange multipliers about
equilibrium states. Because of this, in a linearized theory, they deliver essentially the same
closing relations for the moment systems as those originating from the Grad-type expansion
of f about an equilibrium Planck distribution [12]. In a separate paper, we will discuss similar
but much more difficult problems for a new type of expansion about quasi-equilibrium states.
In particular, we will show there that the present method and the maximum-entropy approach
are consistent with, and appear complementary to, each other.

A key feature of the maximum-entropy closures is that they generate a hierarchy of moment
closure systems, each of which possesses realizability of its predicted moments, has an entropy
and is symmetric hyperbolic. (Recently, Dreyer et al [36] developed an approximative scheme
that allows numerical solutions of the Callaway equation8 to be compared with numerical
solutions of the maximum-entropy system.) Whether the closure of system (2.23), based on
using the closing relations of section 5.2, leads to a system of equations which are hyperbolic
in a convex set of states containing all quasi-equilibrium states is an open problem and
remains to be seen. However, the one-dimensional, rotationally symmetric reduction of this
model appears to be an interesting one as it reveals a nontrivial system of three evolution
equations which, for a well-defined region of parameter space, is a symmetrizable hyperbolic
system. The region of symmetric hyperbolicity in parameter space (the space defined by either
ε, q1, ϕ0|3 or ε, q1,M11) is characterized by the following conditions [8]:

|q1| < cε, ϕ0|3 < � := 4(3 − √
3u)

9(1 − u)|Y | , (6.1)

8 In [36], the Callaway model is defined in a three-dimensional spacetime coordinatized by (t, x1, x2). Moreover,
the relaxation times (τr , τn) are assumed to be the constant quantities.
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where

Y := 9[9(u2 − 2u + 5)A2 − 24(1 + u)A + 16u]

u[3(3 − u)A − 4]2
< 0. (6.2)

These conditions show that the reduced system is certainly hyperbolic in the neighbourhood
of quasi-equilibrium, i.e., in the range where relation (B.6) is valid. Moreover, in the case
ϕ0|3 < 0, there are effectively no mathematical limitations on the magnitude of ϕ0|3 as the
second condition in (6.1) is then satisfied automatically. For any fixed value of ε, as q1 moves
towards 0, one can prove that ϕ0|3 < � = 28/27. In the limit |q1| → cε, one obtains
ϕ0|3 < � = ∞. Consequently, the differential equations for (ε, q1, ϕ0|3) or (ε, q1,M11)

form a symmetrizable hyperbolic system even beyond the limits of their original derivation
(|ϕ0|3| � 1), and indeed this type of observation is one of the most unexpected features of the
one-dimensional reduction of equations (5.22a)–(5.22c). More details on these issues can be
found in [8].
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Appendix A. Some useful integrals

This appendix contains a set of integrals that are needed to derive equations (3.5), (3.6), (3.10),
(3.15), (3.24), (3.32), (3.49) and (5.9).

We first observe that

3
∫ ∞

0
ζ 2 [ζ − ln(eζ − 1)] dζ =

∫ ∞

0

ζ 3

eζ − 1
dζ = 1

4

∫ ∞

0

ζ 4 eζ

(eζ − 1)2
dζ = π4

15
. (A.1)

With the abbreviation

φi1i2...in := 1

2π

∫
S2

gi1gi2 . . . gin

(1 − v · g)4
d2g, (A.2)

the following formulae can be obtained:

φ = 2(3 + u)

3(1 − u)3
, φi = 8

3(1 − u)3
vi, (A.3a)

φij = 2

3(1 − u)2
δij +

8

3(1 − u)3
vivj , (A.3b)

φijk = 3A

(1 − u)2
δ(ij vk) +

2G

(1 − u)3
vivj vk, (A.3c)

where the coefficients A and G are characterized by (5.11) and (B.1a), respectively.
Setting

ψi1i2...in := 1

2π

∫
S2

gi1gi2 . . . gin

(1 − v · g)5
d2g, (A.4)
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we find that further useful formulae are

ψ = 2(1 + u)

(1 − u)4
, ψi = 2(5 + u)

3(1 − u)4
vi, (A.5a)

ψij = 2

3(1 − u)3
δij +

4

(1 − u)4
vivj , (A.5b)

ψijk = 2

(1 − u)3
δ(ij vk) +

4

(1 − u)4
vivj vk, (A.5c)

ψijkl = d1 δ(ij δkl) + d2 δ(ij vkvl) + d3 vivj vkvl, (A.5d)

ψijklm = d4 δ(ij δklvm) + d5 δ(ij vkvlvm) + d6 vivj vkvlvm, (A.5e)

where

d1 := 3A

4(1 − u)2
, d2 := 8 − 15(1 − u)A

2u(1 − u)3
, (A.6a)

d3 := 105(1 − u)2A + 8(13u − 7)

12u2(1 − u)4
, d4 := 5(15A − 8)

4u(1 − u)2
, (A.6b)

d5 := 5[8(7 − 6u) − 105(1 − u)A]

6u2(1 − u)3
, (A.6c)

d6 := 315(1 − u)2A − 8(21 − 39u + 16u2)

4u3(1 − u)4
. (A.6d)

The coefficients (d1, d2, . . . , d6) tend to the limits

d1 = 2
5 , d2 = 24

7 , d3 = 32
9 , (A.7a)

d4 = 10
7 , d5 = 40

9 , d6 = 32
11 (A.7b)

as u approaches 0.

Appendix B. Some useful identities

We first introduce the following quantities:

G := 1

2u

[
8

3
− 5(1 − u)A

]
, (B.1a)

I := 3

u
[3(3u − 5)A + 4(2 − u)] , (B.1b)

P := 1

u
[15(3 − u)A − 4(6 − u)] . (B.1c)

In the limit u → 0, we have

G = 8
7 , I = − 36

35 , P = − 4
7 . (B.2)

Using the above definitions, it is straightforward to verify that the coefficients in (4.10), (4.13)
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and (5.9) satisfy the identities

A +
4u

3 + u
B = 4D, 2uK +

12

3 + u
BE = 3AP, (B.3a)

3E − uP = 6(3 − u)D, K +
8

3 + u
BP − 6(3 − u)CD = 0, (B.3b)

2u2C +
16u

3 + u
B + 3A = 6E

3 − u
, (B.3c)

u2K +
24u

3 + u
BE − 18DE = −9(3 − u)AD, (B.3d)

4

3 + u
B + 2uC = 2

3 − u
P, 3

(
4

3 + u

)2

S + 9EG = −20I, (B.3e)

2u2

(
4

3 + u

)5

Q − 4uE

(
4

3 + u

)3

L +
36

3 + u
BDE = 5ADI. (B.3f )

Given (4.10), these identities are presented in order to facilitate an understanding of
equations (4.13) and (5.9).

The deduction of (4.13) is also based on the additional formulae of the form

λklv
kvl = −3 − u

2E
Ñklv

kvl, (B.4a)

λij v
j = − 1

4D

(
Ñ ij v

j − P

3E
Ñklv

kvlvi

)
. (B.4b)

To derive (B.4), we have used (4.10) and (B.3). Finally, recalling (4.1) and knowing that

vi = 3 + u

4cε
qi = 3

2cε +
√

4c2ε2 − 3|q|2 qi, (B.5)

we obtain from (5.9), (B.3e) and (B.3f)

Mijkv
ivj vk = cu

[
6c2ε

5(3 + u)
Gu2 − I

E
Nijv

ivj

]
. (B.6)

This formula gives us a mathematical basis for studying the issues of [8].
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p 205

[11] Banach Z and Piekarski S 1989 J. Math. Phys. 30 1816



Nine-moment phonon hydrodynamics based on the modified Grad-type approach 9829

[12] Banach Z and Piekarski S 1989 J. Math. Phys. 30 1826
[13] Dreyer W and Struchtrup H 1993 Continuum Mech. Thermodyn. 5 1
[14] Karlin I V, Dukek G and Nonnenmacher T F 1997 Phys. Rev. B 55 6324
[15] Karlin I V and Gorban A N 2002 Ann. Phys., Lpz 11 783
[16] Groth C P T, Gombosi T I, Roe P L and Brown S L 1994 Gaussian-based moment-method closures for the

solution of the Boltzmann equation 5th Int. Conf. on Hyperbolic Problems (New York, Stony Brook, 13–17
June)

[17] Groth C P T, Roe P L, Gombosi T I and Brown S L 1995 On the nonstationary wave structure of a 35-moment
closure for rarefied gas dynamics AIAA 26th Fluid Conf. (San Diego, CA, 19–22 June)

[18] Levermore C D 1996 J. Stat. Phys. 83 1021
[19] Levermore C D and Morokoff W J 1998 SIAM J. Appl. Math. 59 72
[20] Joshi A A and Majumdar A 1993 J. Appl. Phys. 74 31
[21] Salhoumi A, Zakari M and Boughaleb Y 2000 Phys. Lett. A 275 486
[22] Chen G 2001 Phys. Rev. Lett. 86 2297
[23] Chen G 2002 J. Heat Transfer 124 320
[24] Pomraning G C 1973 The Equation of Radiation Hydrodynamics (New York: Pergamon)
[25] van Kampen N G 1987 J. Stat. Phys. 46 709
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